

Providing environmentally responsible water treatment solutions to the oil and gas industry

Innovative Water Management Technologies

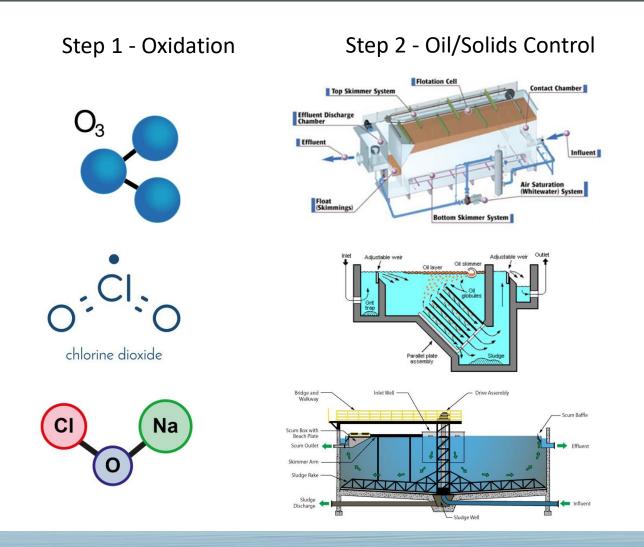
www.hydrozonix.com

Produced Water Reuse Standards

Slickwater Fracs – 5 different Operators

Constituent	Α	В	С	D	E
Chlorides (ppm)	140,000	100,000	N/A	85,000	N/A
Total Hardness (ppm)	50,000	NA	N/A	20,000	Calcium 2000 Magnesium 2000
Sulfides (ppm)	0	0	0	0	0
Iron (ppm)	25	10	10	10	10
Oil (ppm)	100	50	40	10	N/A
TSS (ppm)	100	100 micron	50	5 micron	N/A
рН	6.5-7.5	6-8	6.5-7.5	6-7	6-8
Bacteria (cfu/ml)	100	0	0	1000 GHB 100 SRB 100 APB	10,000

www.hydrozonix.com


Produced Water Reuse Standards

Slickwater Fracs – 5 different Operators

Constituent	Α	В	С	D	E
Chlorides (ppm)	140,000	100,000	N/A	85,000	N/A
Total Hardness (ppm)	50,000	NA	N/A	20,000	Calcium 2000 Magnesium 2000
Sulfides (ppm)	0	0	0	0	0
Iron (ppm)	25	10	10	10	10
Oil (ppm)	100	50	40	10	N/A
TSS (ppm)	100	100 micron	50	5 micron	N/A
рН	6.5-7.5	6-8	6.5-7.5	6-7	6-8
Bacteria (cfu/ml)	100	0	0	1000 GHB 100 SRB 100 APB	10,000

Conventional Produced Water Recycling

Step 3 - Solids Polishing

Fear No Water

Produced Water Reuse Standards

Slickwater Fracs – 5 different Operators

	Constituent	А	В	С	D	E	
	Chlorides (ppm)	140,000	100,000	N/A	85,000	N/A	
What	Total Hardness (ppm)	50,000	NA	N/A	20,000	Calcium 2000 Magnesium 2000	
About	Sulfides (ppm)	0	0	0	0	0	
Dil and	Iron (ppm)	25	10	10	10	10	
Solids ?	Oil (ppm)	100	50	40	10	N/A	
	TSS (ppm)	100	100 micron	50	5 micron	N/A	
	рН	6.5-7.5	6-8	6.5-7.5	6-7	6-8	
	Bacteria (cfu/ml)	100	0	0	1000 GHB 100 SRB 100 APB	10,000	(

Solids & Oil Control

- Solids & Oil Control are located at Wellhead, Tank Batteries and SWD
- Desander or Centrifugal Separator is typically part of a Gun Barrel separator system
- Flowback systems include solids and oil control
- Some solids settle in Gun Barrel tanks while oil is removed
- Upstream Tank Batteries also settle solids and separate oil
- Secondary filtration is sometimes included downstream of Gun Barrel separators
- Not unusual to see < 30 ppm oil from Gun Barrels
- In some cases secondary systems are installed as part of recycling programs, which can include settling tanks, DAF, weir tanks for solids and additional oil removal
- Secondary systems are typically before produced water pits

You don't need Oil and Solids Control if you optimize existing systems

HYDRÖL

Oil/Water & Solids Separation

- Initially at Wellhead
- Then Tank Batteries
- And finally at Gun Barrel Separators

Tank Battery

Wellhead

Produced Water Pit

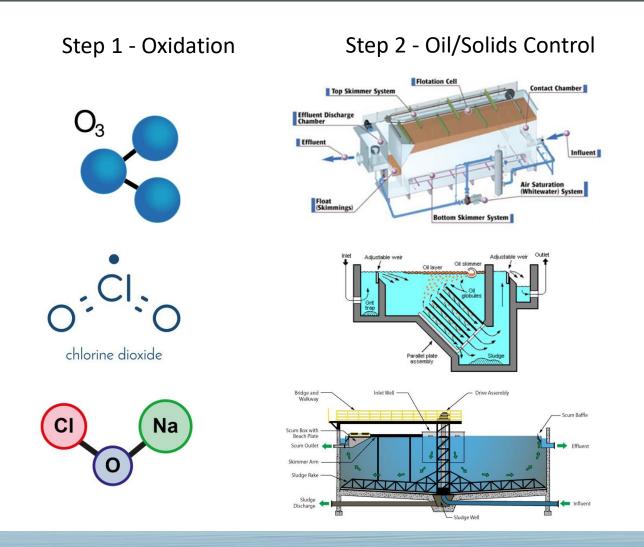
Gun Barrel Separators

Disposal Well

Primary Pit

Solids & Oil Control Solids and Oil/Water Separation

- Secondary Solids Control
 - Sometimes your storage is your secondary control
 - Smaller pit w/sump before a larger pit
 - Oil boom and skimmer can be added

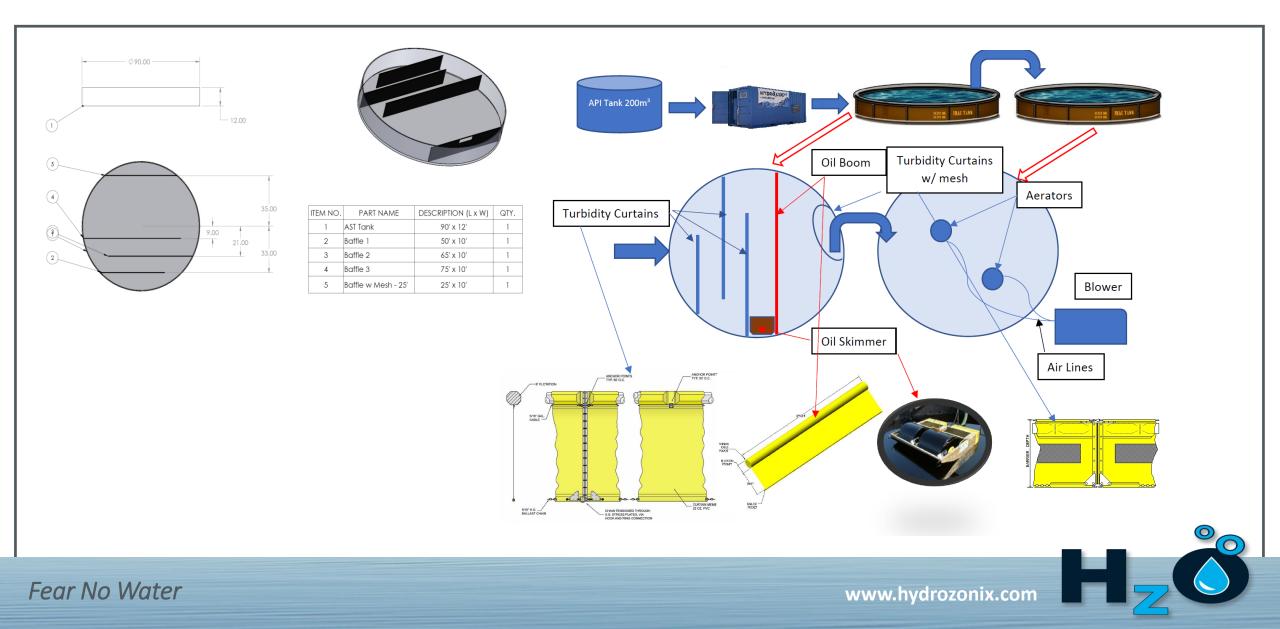


States a

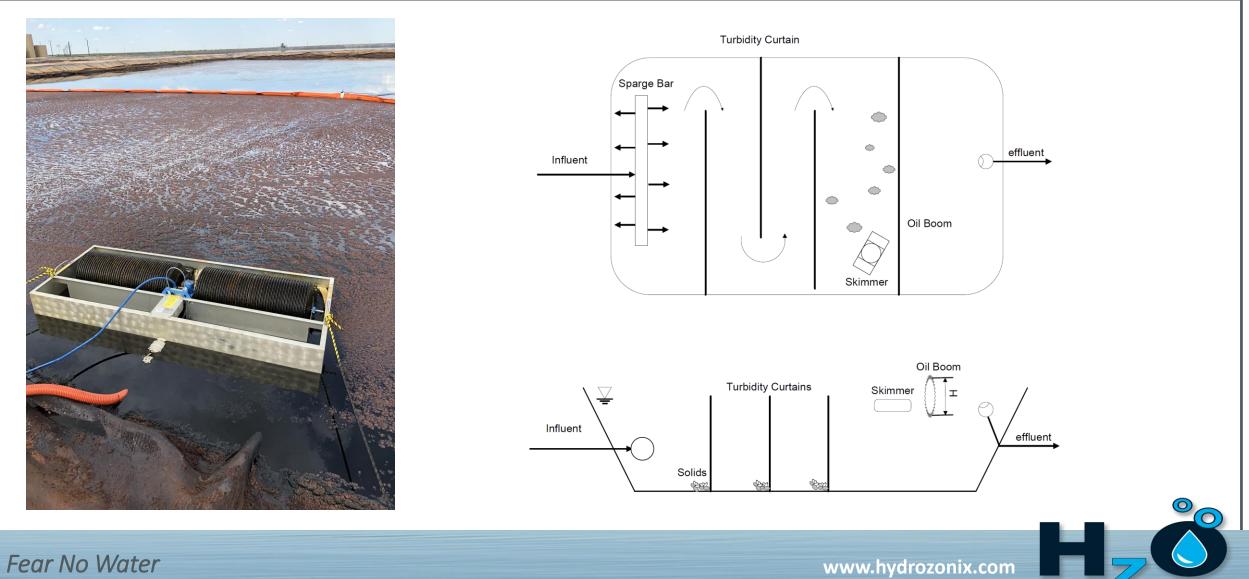
HYDRÖZONIX

HYDROZONIX

Conventional Produced Water Recycling



Step 3 - Solids Polishing



Fear No Water

Produced Water Reuse

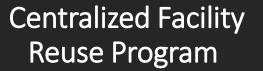
Produced Water Reuse

Oil/Water & Solids Separation

- Initially at Wellhead
- Then Tank Batteries
- And finally at Gun Barrel Separators

Tank Battery

Wellhead


Produced Water Pit

Storage Pit w/ Aeration

Gun Barrel Separators

Disposal Well

Primary Pit w/ Oxidation

1

1

HYDR SCIDE ***

HYDRO CIDE

H,ð

HYDR**Ö**,CIDE**

00

0

Secondary Oil/Water Separation in Primary Pits with oil boom and skimmers YDROZONIX

On The Fly Treatment

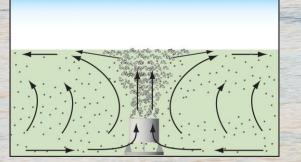
Fully Automated Ozone System

by HYDROZONIX

- Provides Bacteria, Iron and Sulfide Control
- Rent from \$0.05 \$0.10/bbl
- Purchase < \$0.03/bbl

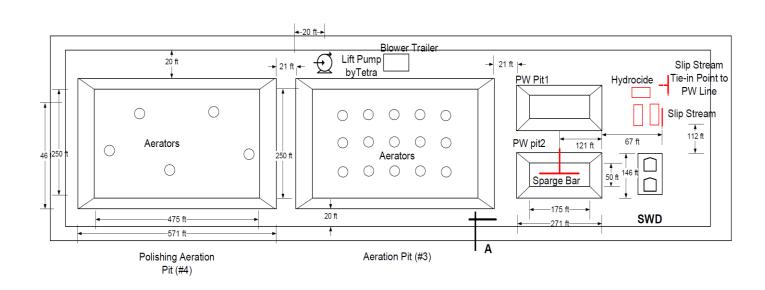
Radial inflo

Outflow is u


Mixing Submersible Aerators

Aeration Benefits

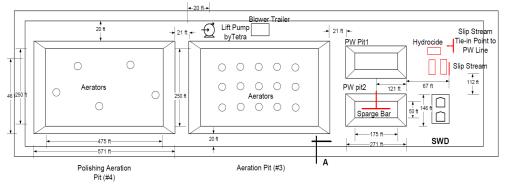
Bacterial Control/Growth Inhibition


- Algae Control/Growth Inhibition
- Iron Control
- Sulfide Control
- Stratification Control
- Icing Inhibition
- Mixing / Homogenization
- Low Cost

Aeration for Bacteria, Iron and Sulfide Control

HYDROGCIDE Case Study

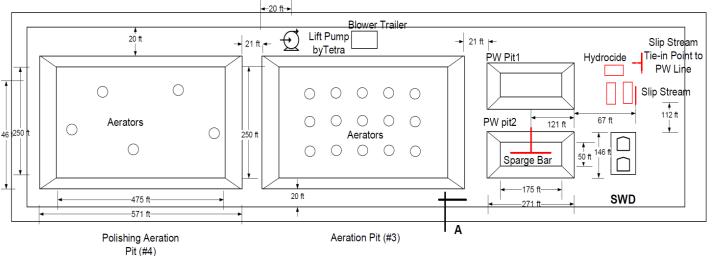
- Dual Use System
 - Pre-Treat Gun Barrels
 - Recirculate Primary Pit for Recycling
- Replaced Sodium Hypochlorite and aeration for \$0.26/bbl
- HYDRO₃CIDE, automated ozone system with aeration under \$0.04/bbl



	ATP	Fe ²⁺	Total Fe	Sulfide	TSS	ORP
Raw PW	32177	0.7	1.6	0.1	65	-112
Treated PW	96	0.3	1.4	0	47	336
Standard	<500	5		0	100	300-400

HYDROGCIDE Case Study

 Dual Use System provides better injectivity by oxidizing Fe to allow it to coagulate other solids and be removed by centrifugal separator


0

HYDRO₃CIDE Case Study

Status

- (5) 40,000 BPD systems installed
- (5) Aeration Systems in 500,000 bbl pits at each location
- (2) additional locations scheduled for November

HYDRO₃CIDE Case Study

Options

- Booms and oil skimmer added to primary pits
- Sparge Bar in primary pit for better mixing

HYDRO₃CIDE Case Study

40,000 B	PD Utili	ties	0&M	Total
\$800,000 Purchase				
\$13,333. month 5yr dep.	33/		\$10,000/ month	
\$0.011/t	bl \$0.0	05/bbl	0.008/bbl	\$0.024

HYDRÖZONIX New Technologies

www.hydrozonix.com

www.hydrozonix.com

A