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Exploiting the Reservoirs in a Factory Mode
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Machine Learning Approach
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Sweet spot prediction technique using machine learning
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Methodology for completion “proxy” modeling
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Earth model serves as the uranium
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Methodology
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» Stage count (10-30)
* Number of clusters (4-10)

* Proppant type (9 types)
* Pump rate (20-100 bpm)

Space of the sensitivity variable

Completion Parameters as Sensitivity Variables
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Best Suited Machine Learning Algorithm
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What impacted the result the most : Drivers for well
performance
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Conclusions

* Predictive proxy model allows engineers to design the completions and
predict the response to production and NPV almost real-time.

* Aslong as the geology does not significantly vary, the directional response
for optimum well completion can be derived from the proxy modeling.

* High level decision making does not have to wait on rigorous modeling and
simulations to fast-track the “engineered” completion approach.

* Drivers for production performance can be identified quickly for different
pads

The specific learnings from Predictive proxy model developed for Eagle Ford in
this study are:

1. A calibrated model is a fundamental step to create a reliable predictive proxy.

2. The Predictive proxy models had an excellent predictability on all four targets
of B1, B3, B12 and Cum_5
3. Higher accuracy is achieved for long term predictions (Cum 5 > B1)
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